Does sex-ratio selection influence nest-site choice in a reptile with temperature-dependent sex determination?
نویسندگان
چکیده
Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.
منابع مشابه
Nest Temperature Is Not Related to Egg Size in a Turtle with Temperature-Dependent Sex Determination
A recent hypothesis posits that temperature-dependent sex determination (TSD) in reptiles may be maintained if females can assess thermal conditions and lay eggs accordingly to produce the sex benefiting most from maternal investment. Specifically, females should lay large eggs in environments likely to produce the sex benefiting most from larger egg size. This relationship has been demonstrate...
متن کاملRepeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination
Evolutionary thermal adaptation is increasingly being elucidated in a variety of systems. However, one of the most striking examples, temperature-dependent sex determination (TSD) in reptiles, has proven stubbornly difficult to decipher. Theoretical models suggest that selection on and heritable variation in thermal sensitivity of embryonic sex determination and maternal behavioural choice of t...
متن کاملBehavioural plasticity may compensate for climate change in a long-lived reptile with temperature-dependent sex determination
How are organisms responding to climate change? The rapidity with which climate is changing suggests that, in species with long generation times, adaptive evolution may be too slow to keep pace with climate change, and that alternative mechanisms, such as behavioural plasticity, may be necessary for population persistence. Species with temperature-dependent sex determination may be particularly...
متن کاملEffective heritability of targets of sex-ratio selection under environmental sex determination.
Selection is expected to maintain primary sex ratios at an evolutionary equilibrium. In organisms with temperature-dependent sex determination (TSD), targets of sex-ratio selection include the thermal sensitivity of the sex-determining pathway (hereafter, sex determination threshold) and nest-site choice. However, offspring sex may be canalized for nests located in thermally extreme environment...
متن کاملTemperature-Dependent Sex Determination under Rapid Anthropogenic Environmental Change: Evolution at a Turtle's Pace?
Organisms become adapted to their environment by evolving through natural selection, a process that generally transpires over many generations. Currently, anthropogenically driven environmental changes are occurring orders of magnitude faster than they did prior to human influence, which could potentially outpace the ability of some organisms to adapt. Here, we focus on traits associated with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1772 شماره
صفحات -
تاریخ انتشار 2013